Sparse models for visual image reconstruction from fMRI activity
نویسندگان
چکیده
منابع مشابه
Sparse models for visual image reconstruction from fMRI activity.
Statistical model is essential for constraint-free visual image reconstruction, as it may overfit training data and have poor generalization. In this study, we investigate the sparsity of the distributed patterns of visual representation and introduce a suitable sparse model for the visual image reconstruction experiment. We use elastic net regularization to model the sparsity of the distribute...
متن کاملfMRI Visual Image Reconstruction Using Sparse Logistic Regression with a Tunable Regularization Parameter
fMRI has been a popular way for encoding and decoding human visual cortex activity. A previous research reconstructed binary image using a sparse logistic regression (SLR) with fMRI activity patterns as its input. In this article, based on SLR, we propose a new sparse logistic regression with a tunable regularization parameter (SLR-T), which includes the SLR and maximum likelihood regression (M...
متن کاملImage reconstruction from photon sparse data
We report an algorithm for reconstructing images when the average number of photons recorded per pixel is of order unity, i.e. photon-sparse data. The image optimisation algorithm minimises a cost function incorporating both a Poissonian log-likelihood term based on the deviation of the reconstructed image from the measured data and a regularization-term based upon the sum of the moduli of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bio-Medical Materials and Engineering
سال: 2014
ISSN: 0959-2989,1878-3619
DOI: 10.3233/bme-141116